Non-destructive estimation using digital cameras is a common approach for estimating leaf area index (LAI) of terrestrial vegetation. However, no attempt has been made so far to develop non-destructive approaches to LAI estimation for aquatic vegetation. Using the submerged plant species Potamogeton malainus, the objective of this study was to determine whether the gap fraction derived from vertical photographs could be used to estimate LAI of aquatic vegetation. Our results suggested that upward-oriented photographs taken from beneath the water surface were more suitable for distinguishing vegetation from other objects than were downward-oriented photographs taken from above the water surface. Exposure settings had a substantial influence on the identification of vegetation in upward-oriented photographs. Automatic exposure performed nearly as well as the optimal trial exposure, making it a good choice for operational convenience. Similar to terrestrial vegetation, our results suggested that photographs taken for the purpose of distinguishing gap fraction in aquatic vegetation should be taken under diffuse light conditions. Significant logarithmic relationships were observed between the vertical gap fraction derived from upward-oriented photographs and plant area index (PAI) and LAI derived from destructive harvesting. The model we developed to depict the relationship between PAI and gap fraction was similar to the modified theoretical Poisson model, with coefficients of 1.82 and 1.90 for our model and the theoretical model, respectively. This suggests that vertical upward-oriented photographs taken from below the water surface are a feasible alternative to destructive harvesting for estimating PAI and LAI for the submerged aquatic plant Potamogeton malainus. © 2012 Zhao et al.
CITATION STYLE
Zhao, D., Xie, D., Zhou, H., Jiang, H., & An, S. (2012). Estimation of Leaf Area Index and Plant Area Index of a Submerged Macrophyte Canopy Using Digital Photography. PLoS ONE, 7(12). https://doi.org/10.1371/journal.pone.0051034
Mendeley helps you to discover research relevant for your work.