A pH/ROS Cascade-Responsive Charge-Reversal Nanosystem with Self-Amplified Drug Release for Synergistic Oxidation-Chemotherapy

112Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Poor cell uptake of drugs is one of the major challenges for anticancer therapy. Moreover, the inability to release adequate drug at tumor sites and inherent multidrug resistance (MDR) may further limit the therapeutic effect. Herein, a delivery nanosystem with a charge-reversal capability and self-amplifiable drug release pattern is constructed by encapsulating β-lapachone in pH/ROS cascade-responsive polymeric prodrug micelle. The surface charge of this micellar system would be converted from negative to positive for enhanced tumor cell uptake in response to the weakly acidic tumor microenvironment. Subsequently, the cascade-responsive micellar system could be dissociated in a reactive oxygen species (ROS)-rich intracellular environment, resulting in cytoplasmic release of β-lapachone and camptothecin (CPT). Furthermore, the released β-lapachone is capable of producing ROS under the catalysis of nicotinamide adenine dinucleotide (NAD)(P)H:quinone oxidoreductase-1 (NQO1), which induces the self-amplifiable disassembly of the micelles and drug release to consume adenosine triphosphate (ATP) and downregulate P-glycoprotein (P-gp), eventually overcoming MDR. Moreover, the excessive ROS produced from β-lapachone could synergize with CPT and further propagate tumor cell apoptosis. The studies in vitro and in vivo consistently demonstrate that the combination of the pH-responsive charge-reversal, upregulation of tumoral ROS level, and self-amplifying ROS-responsive drug release achieves potent antitumor efficacy via the synergistic oxidation-chemotherapy.

Cite

CITATION STYLE

APA

Dai, L., Li, X., Duan, X., Li, M., Niu, P., Xu, H., … Yang, H. (2019). A pH/ROS Cascade-Responsive Charge-Reversal Nanosystem with Self-Amplified Drug Release for Synergistic Oxidation-Chemotherapy. Advanced Science, 6(4). https://doi.org/10.1002/advs.201801807

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free