We prove that for a complex number a a with Re โก a 2 > โ ฯ 2 / 4 \operatorname {Re} {a^2} > - {\pi ^2}/4 and x ( โ ) โ L 2 [ 0 , 1 ] x( \cdot ) \in {L^2}[0,1] , \[ E W { exp โก ( โ 2 โ 1 a 2 | | x + y | | 2 2 ) } = ( cosh โก a ) โ 1 / 2 exp โก [ 2 โ 1 ( โซ 0 1 โซ 0 1 k ( s , t ) x ( s ) x ( t ) d s d t โ a 2 โซ 0 1 x 2 ( t ) d t ) ] , {E_W}\{ \exp ( - {2^{ - 1}}{a^2}||x + y||_2^2)\} = {(\cosh a)^{ - 1/2}}\exp \left [ {{2^{ - 1}}\left ( {\int _0^1 {\int _0^1 {k(s,t)x(s)x(t)dsdt} - {a^2}\int _0^1 {{x^2}(t)dt} } } \right )} \right ], \] , where W W , the standard Wiener measure on C [ 0 , 1 ] C[0,1] , is the distribution of y y and \[ k ( s , t ) = a 3 ( 2 cosh โก a ) โ 1 [ sinh โก ( a ( 1 โ | s โ t | ) ) โ sinh โก ( a ( 1 โ | s + t | ) ) ] . k(s,t) = {a^3}{(2\cosh a)^{ - 1}}[\sinh (a(1 - |s - t|)) - \sinh (a(1 - |s + t|))]. \] .
CITATION STYLE
Chiang, T.-S., Chow, Y. S., & Lee, Y.-J. (1987). A formula for ๐ธ_{๐}๐๐ฅ๐(-2โ1๐2โ๐ฅ+๐ฆโ2โ). Proceedings of the American Mathematical Society, 100(4), 721โ724. https://doi.org/10.1090/s0002-9939-1987-0894444-5
Mendeley helps you to discover research relevant for your work.