A formula for ๐ธ_{๐‘Š}๐‘’๐‘ฅ๐‘(-2โปยน๐‘Žยฒโ€–๐‘ฅ+๐‘ฆโ€–ยฒโ‚‚)

  • Chiang T
  • Chow Y
  • Lee Y
N/ACitations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

We prove that for a complex number a a with Re โก a 2 > โˆ’ ฯ€ 2 / 4 \operatorname {Re} {a^2} > - {\pi ^2}/4 and x ( โ‹… ) โˆˆ L 2 [ 0 , 1 ] x( \cdot ) \in {L^2}[0,1] , \[ E W { exp โก ( โˆ’ 2 โˆ’ 1 a 2 | | x + y | | 2 2 ) } = ( cosh โก a ) โˆ’ 1 / 2 exp โก [ 2 โˆ’ 1 ( โˆซ 0 1 โˆซ 0 1 k ( s , t ) x ( s ) x ( t ) d s d t โˆ’ a 2 โˆซ 0 1 x 2 ( t ) d t ) ] , {E_W}\{ \exp ( - {2^{ - 1}}{a^2}||x + y||_2^2)\} = {(\cosh a)^{ - 1/2}}\exp \left [ {{2^{ - 1}}\left ( {\int _0^1 {\int _0^1 {k(s,t)x(s)x(t)dsdt} - {a^2}\int _0^1 {{x^2}(t)dt} } } \right )} \right ], \] , where W W , the standard Wiener measure on C [ 0 , 1 ] C[0,1] , is the distribution of y y and \[ k ( s , t ) = a 3 ( 2 cosh โก a ) โˆ’ 1 [ sinh โก ( a ( 1 โˆ’ | s โˆ’ t | ) ) โˆ’ sinh โก ( a ( 1 โˆ’ | s + t | ) ) ] . k(s,t) = {a^3}{(2\cosh a)^{ - 1}}[\sinh (a(1 - |s - t|)) - \sinh (a(1 - |s + t|))]. \] .

Cite

CITATION STYLE

APA

Chiang, T.-S., Chow, Y. S., & Lee, Y.-J. (1987). A formula for ๐ธ_{๐‘Š}๐‘’๐‘ฅ๐‘(-2โˆ’1๐‘Ž2โ€–๐‘ฅ+๐‘ฆโ€–2โ‚‚). Proceedings of the American Mathematical Society, 100(4), 721โ€“724. https://doi.org/10.1090/s0002-9939-1987-0894444-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free