Short-acting anti-VWF (von Willebrand Factor) aptamer improves the recovery, survival, and hemostatic functions of refrigerated platelets

16Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Objective: Refrigeration-induced binding of VWF (von Willebrand factor) to platelets contributes to the rapid clearance of refrigerated platelets. In this study, we investigate whether inhibiting VWF binding by a DNA-based aptamer ameliorates the clearance of refrigerated platelets without significantly impeding hemostatic functions. Approach and Results: Platelets were refrigerated with or without aptamer ARC1779 for 48 hours. VWF binding, the effective lifetime of ARC1779, platelet post-transfusion recovery and survival, and the hemostatic function were measured. ARC1779 treatment during refrigeration inhibited the platelet-VWF interaction. ARC1779-treated refrigerated murine platelets exhibited increased post-transfusion recovery and survival than untreated ones (recovery of ARC1779-treated platelets: 76.7±5.5%; untreated: 63.7±0.8%; P<0.01. Half-life: 31.4±2.36 hours versus 28.1±0.86 hours; P<0.05). A similar increase was observed for refrigerated human platelets (recovery: 49.4±4.4% versus 36.8±2.1%, P<0.01; half-life: 9.2±1.5 hours versus 8.7±0.9 hours, ns). The effective lifetime of ARC1779 in mice was 2 hours. Additionally, ARC1779 improved the long-term (2 hours after transfusion) hemostatic function of refrigerated platelets (tail bleeding time of mice transfused with ARC1779-treated refrigerated platelets: 160±65 seconds; untreated: 373±96 seconds; P<0.01). The addition of an ARC1779 antidote before transfusion improved the immediate (15 minutes after transfusion) hemostatic function (bleeding time of treated platelets: 149±21 seconds; untreated: 320±36 seconds; P<0.01). Conclusions: ARC1779 improves the post-transfusion recovery of refrigerated platelets and preserves the long-term hemostatic function of refrigerated platelets. These results suggest that a short-acting inhibitor of the platelet-VWF interaction may be a potential therapeutic option to improve refrigeration of platelets for transfusion treatment.

Cite

CITATION STYLE

APA

Chen, W., Voos, K. M., Josephson, C. D., & Li, R. (2019). Short-acting anti-VWF (von Willebrand Factor) aptamer improves the recovery, survival, and hemostatic functions of refrigerated platelets. Arteriosclerosis, Thrombosis, and Vascular Biology, 39(10), 2028–2037. https://doi.org/10.1161/ATVBAHA.119.312439

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free