The variability of the mixed layer depth (MLD) is examined over a decade (1997-2007) for the tropical boundary of the California Current (24-32°N), using conductivity-temperature-depth observations collected by quarterly survey cruises. Results indicate that salinity gradients control MLD rather than temperature gradients. The mean state of the upper ocean indicates that contours of constant MLD are parallel to the coast, with mixed layer thickness decreasing toward the coastal zone. The deepest (∼70 m) thickness is reached in January and the shallowest (∼15 m) occurs in July. The warmer conditions (summer) are reproduced for a simple thermal energy equation. The rest of the seasons are reproduced for a one-dimensional momentum balance for the upper ocean, which includes Ekman dynamics and stratification. This comparison indicates that the variability of MLD is mainly due to wind-driven phenomena except during the heating period. In particular, seasonal and interannual variability of the MLD are correlated with offshore Ekman transport. An abrupt MLD change occurs between January 1998 and January 2000 associated with the strong El Niño-La Niña cycle shift that occurred in this period. Copyright 2010 by the American Geophysical Union.
CITATION STYLE
Jeronimo, G., & Gomez-Valdes, J. (2010). Mixed layer depth variability in the tropical boundary of the California Current, 1997-2007. Journal of Geophysical Research: Oceans, 115(5). https://doi.org/10.1029/2009JC005457
Mendeley helps you to discover research relevant for your work.