BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation

304Citations
Citations of this article
200Readers
Mendeley users who have this article in their library.

Abstract

Bone morphogenetic protein (BMP) signaling is required for endochondral bone formation. However, whether or not the effects of BMPs are mediated via canonical Smad pathways or through noncanonical pathways is unknown. In this study we have determined the role of receptor Smads 1, 5 and 8 in chondrogenesis. Deletion of individual Smads results in viable and fertile mice. Combined loss of Smads 1, 5 and 8, however, results in severe chondrodysplasia. Smad1/5CKO (cartilage-specific knockout) mutant mice are nearly identical to Smad1/5CKO;Smad8-/- mutants, indicating that Smads 1 and 5 have overlapping functions and are more important than Smad8 in cartilage. The Smad1/5CKO phenotype is more severe than that of Smad4CKO mice, challenging the dogma, at least in chondrocytes, that Smad4 is required to mediate Smad signaling through BMP pathways. The chondrodysplasia in Smad1/5CKO mice is accompanied by imbalances in cross-talk between the BMP, FGF and Ihh/ PTHrP pathways. We show that Ihh is a direct target of BMP pathways in chondrocytes, and that FGF exerts antagonistic effects on Ihh expression. Finally, we tested whether FGF exerts its antagonistic effects directly through Smad linker phosphorylation. The results support the alternative conclusion that the effects of FGFs on BMP signaling are indirect in vivo.

Cite

CITATION STYLE

APA

Retting, K. N., Song, B., Yoon, B. S., & Lyons, K. M. (2009). BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development, 136(7), 1093–1104. https://doi.org/10.1242/dev.029926

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free