High-order Gaussian beams with multiple propagation modes have been studied for free-space optical communications. Fast classification of beams using a diffractive deep neural network (D 2 NN) has been proposed. D 2 NN optimization is important because it has numerous hyperparameters, such as interlayer distances and mode combinations. In this study, we classify Hermite–Gaussian beams, which are high-order Gaussian beams, using a D 2 NN, and automatically tune one of its hyperparameters known as the interlayer distance. We used the tree-structured Parzen estimator, a hyperparameter auto-tuning algorithm, to search for the best model. As a result, the proposed method improved the classification accuracy in a 16 mode classification from 98.3% in the case of equal spacing of layers to 98.8%. In a 36 mode classification, the proposed method significantly improved the classification accuracy from 84.9% to 94.9%. In addition, we confirmed that accuracy by auto-tuning improves as the number of classification modes increases.
CITATION STYLE
Watanabe, S., Shimobaba, T., Kakue, T., & Ito, T. (2022). Hyperparameter tuning of optical neural network classifiers for high-order Gaussian beams. Optics Express, 30(7), 11079. https://doi.org/10.1364/oe.451729
Mendeley helps you to discover research relevant for your work.