When subjects are asked to determine where a fast-moving stimulus enters a window, they typically do not localize the stimulus at the edge, but at some later position within that window (Fröhlich effect). We report five experiments that explored this illusion. An attentional account is tested, assuming that the entrance of the stimulus in the window initiates a focus shift toward it. While this shift is under way, the stimulus moves into the window. Because the first phenomenal (i.e., explicitly reportable) representation of the stimulus will not be available before the end of the focus shift, the stimulus is perceived at some later position. In Experiment 1, we established the Fröhlich effect and showed that its size depends on stimulus parameters such as movement speed and movement direction. In Experiments 2 and 3, we examined the influence of eye movements and tested whether the effect changed when the stimuli were presented within a structural background or when they started from differnt eccentricities. In Experiments 4 and 5, specific predictions from the attentional model were tested: In Experiment 4 we showed that the processing of the moving stimulus benefits from a preceding peripheral cue indicating the starting position of the subsequent movement, which induces a preliminary focus shift to the position where the moving stimulus would appear. As a consequence the Fröhlich effect was reduced. Using a detection task in Experiment 5, we showed that feature information about the moving stimulus is lost when if falls into the critical interval of the attention shift. In conclusion, the present attentional account shows that selection mechanisms are not exclusively space based; rather, they can establish a spatial representation that is also used for perceptual judgment - that is, selection mechanisms can be space establishing as well.
CITATION STYLE
Müsseler, J., & Aschersleben, G. (1998). Localizing the first position of a moving stimulus: The Fröhlich effect and an attention-shifting explanation. Perception and Psychophysics, 60(4), 683–695. https://doi.org/10.3758/BF03206055
Mendeley helps you to discover research relevant for your work.