Crop models are valuable tools for exploring the responses of crops to changes in environmental factors, and have been widely used to analyze the response of crops to varying soil water content and salinity levels in extreme drought and high salinity conditions. To obtain suitable water-salt thresholds and the total irrigation amount for cotton in the arid oasis of southern Xinjiang, the AquaCrop model was calibrated and validated using measured data from 2020 and 2021 (total irrigation amount: 255–480 mm; initial soil salinity levels: 0.2–0.6%). With the same initial soil water content, when the initial soil salinity < 7 dS/m, cotton yield did not significantly change under different levels of total irrigation amount, while when the initial soil salinity was 10 dS/m, there was a significant difference in cotton yield with a total irrigation amount > 300 mm. The total irrigation amount of 375 mm is the threshold for cotton at the low-salinity treatment, while it increases to 450 mm at the high-salinity treatment. Based on cotton performance with the AquaCrop model, the threshold values of soil salinity were 7, 9.3, 8.2 and 9.3 dS/m (ECe) during the cotton stage of seedling, squaring, flower-boll and maturity, respectively. The total irrigation amount of 450 to 500 mm could achieve a win-win scenario for both cotton yield and water use efficiency under sandy loam soil. In summary, this study can serve as a reference for regulating water and salt in arid saline-alkali regions.
CITATION STYLE
Li, Y., Feng, Q., Li, D., Li, M., Ning, H., Han, Q., … Sun, J. (2022). Water-Salt Thresholds of Cotton (Gossypium hirsutum L.) under Film Drip Irrigation in Arid Saline-Alkali Area. Agriculture (Switzerland), 12(11). https://doi.org/10.3390/agriculture12111769
Mendeley helps you to discover research relevant for your work.