Shared Genetic and Epigenetic Mechanisms between the Osteogenic Differentiation of Dental Pulp Stem Cells and Bone Marrow Stem Cells

20Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Objective. To identify the shared genetic and epigenetic mechanisms between the osteogenic differentiation of dental pulp stem cells (DPSC) and bone marrow stem cells (BMSC). Materials and Methods. The profiling datasets of miRNA expression in the osteogenic differentiation of mesenchymal stem cells from the dental pulp (DPSC) and bone marrow (BMSC) were searched in the Gene Expression Omnibus (GEO) database. The differential expression analysis was performed to identify differentially expressed miRNAs (DEmiRNAs) dysregulated in DPSC and BMSC osteodifferentiation. The target genes of the DEmiRNAs that were dysregulated in DPSC and BMSC osteodifferentiation were identified, followed by the identification of the signaling pathways and biological processes (BPs) of these target genes. Accordingly, the DEmiRNA-transcription factor (TFs) network and the DEmiRNAs-small molecular drug network involved in the DPSC and BMSC osteodifferentiation were constructed. Results. 16 dysregulated DEmiRNAs were found to be overlapped in the DPSC and BMSC osteodifferentiation, including 8 DEmiRNAs with a common expression pattern (8 upregulated DEmiRNAs (miR-101-3p, miR-143-3p, miR-145-3p/5p, miR-19a-3p, miR-34c-5p, miR-3607-3p, miR-378e, miR-671-3p, and miR-671-5p) and 1 downregulated DEmiRNA (miR-671-3p/5p)), as well as 8 DEmiRNAs with a different expression pattern (i.e., miR-1273g-3p, miR-146a-5p, miR-146b-5p, miR-337-3p, miR-382-3p, miR-4508, miR-4516, and miR-6087). Several signaling pathways (TNF, mTOR, Hippo, neutrophin, and pathways regulating pluripotency of stem cells), transcription factors (RUNX1, FOXA1, HIF1A, and MYC), and small molecule drugs (curcumin, docosahexaenoic acid (DHA), vitamin D3, arsenic trioxide, 5-fluorouracil (5-FU), and naringin) were identified as common regulators of both the DPSC and BMSC osteodifferentiation. Conclusion. Common genetic and epigenetic mechanisms are involved in the osteodifferentiation of DPSCs and BMSCs.

Cite

CITATION STYLE

APA

Gaus, S., Li, H., Li, S., Wang, Q., Kottek, T., Hahnel, S., … Lethaus, B. (2021). Shared Genetic and Epigenetic Mechanisms between the Osteogenic Differentiation of Dental Pulp Stem Cells and Bone Marrow Stem Cells. BioMed Research International. Hindawi Limited. https://doi.org/10.1155/2021/6697810

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free