Aminoacyl-tRNAs containing a deoxy substitution in the penultimate nucleotide (C75 2′OH → 2′H) have been widely used in translation for incorporation of unnatural amino acids (AAs). However, this supposedly innocuous modification surprisingly increased peptidyl-tRNAAlaugc drop off in biochemical assays of successive incorporations. Here we predict the function of this tRNA 2′OH in the ribosomal A, P and E sites using recent co-crystal structures of ribosomes and tRNA substrates and test these structure-function models by systematic kinetics analyses. Unexpectedly, the C75 2′H did not affect A- to P-site translocation nor peptidyl donor activity of tRNAAlaugc. Rather, the peptidyl acceptor activity of the A-site Ala-tRNAAlaugc and the translocation of the P-site deacylated tRNAAlaugc to the E site were impeded. Delivery by EF-Tu was not significantly affected. This broadens our view of the roles of 2′OH groups in tRNAs in translation.
CITATION STYLE
Wang, J., & Forster, A. C. (2017). Translational roles of the C75 2′OH in an in vitro tRNA transcript at the ribosomal A, P and e sites. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-06991-6
Mendeley helps you to discover research relevant for your work.