The United Nations established the 17 Sustainable Development Goals (SDGs) in 2015 to address issues like gender equality, clean water, health, education, and hunger by 2030. Of the 17 SDGs, health and education have an outsized impact on countries’ socioeconomic development, so providing insights into progress on these two goals is crucial. Machine learning can help solve many real-world problems, including working towards the SDGs. This paper proposes using a metaheuristic ensemble of Cat Swarm Optimization algorithms with Feed Forward Extreme Learning Machines, called Sustainable Health And Educational Goal Development (SHEGD) Prediction, to effectively contribute to countries’ economic growth by achieving health and education SDGs through machine learning. The model is assessed using UN SDG datasets and performance metrics like accuracy, precision, recall, specificity, and F1-score. Comparisons to other machine learning models demonstrate this model's superiority in designing a recommendation system for progressing towards the health and education SDGs. The proposed model outperforms the other approaches, proving its value for an SDG recommendation system design.
CITATION STYLE
Jagadeesh Kannan, R., & Manningal, M. (2024). A sustainable health and educational goal development (SHEGD) prediction using metaheuristic extreme learning algorithms. Automatika, 65(3), 716–725. https://doi.org/10.1080/00051144.2024.2318168
Mendeley helps you to discover research relevant for your work.