Reversals in Movement Direction in Locomotor Interception of Uniformly Moving Targets

4Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.

Abstract

Here we studied how participants steer to intercept uniformly moving targets in a virtual driving task. We tested the hypothesis that locomotor interception behavior cannot fully be explained by a strategy of nulling rate of change in pertinent agent-target relations such as the target-heading angle or target’s bearing angle. In line with a previously reported observation and model simulations, we found that, under specific combinations of initial target eccentricity and target motion direction, locomotor paths revealed reversals in movement direction. This phenomenon is not compatible with unique reliance on first-order (i.e., rate-of-change based) information in the case of uniformly moving targets. We also found that, as expected, such reversals in movement direction were not observed consistently over all trials of the same experimental condition: their presence depended on the timing of the first steering action effected by the participant, with only early steering actions leading to reversals in movement direction. These particular characteristics of the direction-reversal phenomenon demonstrated here for a locomotor interception-by-steering task correspond to those reported for lateral manual interception. Together, these findings suggest that control strategies operating in manual and locomotor interception may at least share certain characteristics.

Cite

CITATION STYLE

APA

Ceyte, G., Casanova, R., & Bootsma, R. J. (2021). Reversals in Movement Direction in Locomotor Interception of Uniformly Moving Targets. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.562806

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free