Discrepancy-based inference for intractable generative models using Quasi-Monte Carlo

2Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Intractable generative models, or simulators, are models for which the likelihood is unavailable but sampling is possible. Most approaches to parameter inference in this setting require the computation of some discrepancy between the data and the generative model. This is for example the case for minimum distance estimation and approximate Bayesian computation. These approaches require simulating a high number of realisations from the model for different parameter values, which can be a significant challenge when simulating is an expensive operation. In this paper, we propose to enhance this approach by enforcing “sample diversity” in simulations of our models. This will be implemented through the use of quasi-Monte Carlo (QMC) point sets. Our key results are sample complexity bounds which demonstrate that, under smoothness conditions on the generator, QMC can significantly reduce the number of samples required to obtain a given level of accuracy when using three of the most common discrepancies: the maximum mean discrepancy, the Wasserstein distance, and the Sinkhorn divergence. This is complemented by a simulation study which highlights that an improved accuracy is sometimes also possible in some settings which are not covered by the theory.

Cite

CITATION STYLE

APA

Niu, Z., Meier, J., & Briol, F. X. (2023). Discrepancy-based inference for intractable generative models using Quasi-Monte Carlo. Electronic Journal of Statistics, 17(1), 1411–1456. https://doi.org/10.1214/23-EJS2131

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free