In the cloud computing platform, DDoS (Distributed Denial-of-service) attacks are one of the most commonly occurring attacks. Research studies on DDoS mitigation rarely considered the data shift problem in real-time implementation. Concurrently, existing studies have attempted to perform DDoS attack detection. Nevertheless, they have been deficient regarding the detection rate. Hence, the proposed study proposes a novel DDoS mitigation scheme using LCDT-M (Log-Cluster DDoS Tree Mitigation) framework for the hybrid cloud environment. LCDT-M detects and mitigates DDoS attacks in the Software-Defined Network (SDN) based cloud environment. The LCDT-M comprises three algorithms: GFS (Greedy Feature Selection), TLMC (Two Log Mean Clustering), and DM (Detection-Mitigation) based on DT (Decision Tree) to optimize the detection of DDoS attacks along with mitigation in SDN. The study simulated the defined cloud environment and considered the data shift problem during the real-time implementation. As a result, the proposed architecture achieved an accuracy of about 99.83%, confirming its superior performance.
CITATION STYLE
Jeba Praba, J., & Sridaran, R. (2023). LCDT-M: Log-Cluster DDoS Tree Mitigation Framework Using SDN in the Cloud Environment. International Journal of Computer Network and Information Security, 15(2), 62–72. https://doi.org/10.5815/ijcnis.2023.02.05
Mendeley helps you to discover research relevant for your work.