CdS nanodroplets over silica microballs for efficient room-temperature LPG detection

24Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

An efficient room-temperature sensor for liquified petroleum gas (LPG) is demonstrated by employing CdS:SiO2 nanocomposite thin films (CdS:SiO2 NCTFs) for the first time. CdS:SiO2 NCTFs exhibiting the morphology of CdS nanodroplets on micron-sized spherical balls of SiO2 were deposited using the pulsed laser deposition (PLD) method, followed by thermal annealing. The targets of chemically synthesized CdS nanoparticles and commercially procured SiO2 were used to deposit CdS:SiO2 NCTFs by swapping them at a frequency ratio of 2: 8 laser pulses per second, which was selected to ensure nearly the same ratio of CdS to SiO2 in NCTFs and was confirmed by X-ray photoelectron spectroscopy. Sensor fabrication was carried out on bare CdS thin films and as-grown and annealed CdS:SiO2 NCTFs using an Ag paste over Pt interdigitated electrodes to measure the resistance of the films in air and in the presence of reducing gases, viz., LPG, H2, H2S, NO2 and CO2. The present sensor showed the highest response for LPG and the observed value was ∼71% for 1000 ppm at RT with the response time and recovery time of 91 s and 140 s, respectively. The response of the sensor was sustainable up to 75 °C and then decreased, which suggested its promising usage for low-temperature regions as well. A low detection limit of 20 ppm at RT for LPG was determined; however, a significant response was observed only at 50 ppm. The sensor retained ∼96% of its initial response even after 8 weeks and that too at 100 °C. The present LPG sensor is highly promising due to its high sensitivity, low detection limit, low response and recovery times, good reproducibility, RT operation and simple fabrication technique.

Cite

CITATION STYLE

APA

Saxena, N., Kumar, P., & Gupta, V. (2019). CdS nanodroplets over silica microballs for efficient room-temperature LPG detection. Nanoscale Advances, 1(6), 2382–2391. https://doi.org/10.1039/c9na00053d

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free