Revising the eclipse prediction scheme in the Antikythera mechanism

4Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In 1901, an extraordinary ancient Greek artefact was discovered in a shipwreck just off the tiny island of Antikythera. It was later shown to be a complex astronomical calculating machine and is now known as the Antikythera Mechanism. In 2005, it was established that it predicted eclipses, using a 7th century BC Babylonian eclipse cycle of 223 lunar months, known as the Saros Cycle. Understanding the complex eclipse prediction scheme on the Antikythera Mechanism has resulted from a fascinating series of discoveries. The eclipse prediction scheme is implemented through descriptive glyphs, inscribed round a 223-month Saros Dial at the rear of the Mechanism: a glyph in a particular month indicates a predicted eclipse. A 2008 publication deciphered the meaning of the glyphs: they indicate whether the predicted eclipse is lunar or solar; the possible visibility of the eclipse; and its time of day. The glyphs also include an alphabetical Index Letter, referring to inscriptions round the Saros Dial, which describe eclipse characteristics. In that publication, the full eclipse prediction scheme was not understood but subsequent work in 2014 made substantial progress. The eclipse characteristics, such as the colour and magnitude of the eclipse, are listed together in the inscriptions, together with a group of Index Letters for the eclipses to which they apply. The deeply puzzling grouping and ordering of these Index Letter Groups was solved with a simple mathematical model, which both explained these groups and the distribution of the glyphs round the Saros Dial—revealing an eclipse prediction scheme of extraordinary sophistication and ambition. Later work in 2016 proposed a radical revision of this eclipse prediction scheme, though it did not challenge the mathematical basis of the scheme. The 2016 scheme implied a completely different picture of the whole of the back plate of the Antikythera Mechanism, destroying its essential mathematical symmetry. This revision is comprehensively refuted here, except for the identification of a new text character in one of the Index Letter Groups, which implies an interesting revision of the 2014 scheme but which preserves the elegant 2014 reconstruction of the back plate of the Antikythera Mechanism.

Cite

CITATION STYLE

APA

Freeth, T. (2019). Revising the eclipse prediction scheme in the Antikythera mechanism. Palgrave Communications, 5(1). https://doi.org/10.1057/s41599-018-0210-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free