Signals mediated by G-protein-linked receptors display agonist-induced attenuation and recovery involving both protein kinases and phosphatases. The role of protein kinases and phosphatases in agonist-induced attenuation and recovery of β-adrenergic receptors was explored by two complementary approaches, antisense RNA suppression and co-immunoprecipitation of target elements. Protein phosphatases 2A and 2B are associated with the unstimulated receptor, the latter displaying a transient decrease followed by a 2-fold increase in the levels of association at 30 min following challenge with agonist. Protein kinase A displays a robust, agonist-induced association with β-adrenergic receptors over the same period. Suppression of phosphatases 2A and 2B with antisense RNA or inhibition of their activity with calyculin A and FK506, respectively, blocks resensitization following agonist removal. Recycling of receptors to the plasma membrane following agonist-promoted sequestration is severely impaired by loss of either phosphatase 2B or protein kinase C. In addition, loss of protein kinase C diminishes association of phosphatase 2B with β-adrenergic receptors. Overlay assays performed with the RII subunit of protein kinase A and co- immunoprecipitations reveal proteins of the A kinase-anchoring proteins (AKAP) family, including AKAP250 also known as gravin, associated with the β-adrenergic receptor. Suppression of gravin expression disrupts recovery from agonist-induced desensitization, confirming the role of gravin in organization of G-protein-linked signaling complexes. The Ht31 peptide, which blocks AKAP protein-protein interactions, blocks association of β-adrenergic receptors with protein kinase A. These data are the first to reveal dynamic complexes of β-adrenergic receptors with protein kinases and phosphatases acting via an anchoring protein, gravin.
CITATION STYLE
Shih, M., Lin, F., Scott, J. D., Wang, H. Y., & Malbon, C. C. (1999). Dynamic complexes of β2-adrenergic receptors with protein kinases and phosphatases and the role of gravin. Journal of Biological Chemistry, 274(3), 1588–1595. https://doi.org/10.1074/jbc.274.3.1588
Mendeley helps you to discover research relevant for your work.