Superconductive sodalite-like clathrate calcium hydride at high pressures

696Citations
Citations of this article
232Readers
Mendeley users who have this article in their library.

Abstract

Hydrogen-rich compounds hold promise as high-temperature superconductors under high pressures. Recent theoretical hydride structures on achieving high-pressure superconductivity are composed mainly of H 2 fragments. Through a systematic investigation of Ca hydrides with different hydrogen contents using particle-swam optimization structural search, we show that in the stoichiometry CaH 6 a body-centered cubic structure with hydrogen that forms unusual "sodalite" cages containing enclathrated Ca stabilizes above pressure 150 GPa. The stability of this structure is derived from the acceptance by two H 2 of electrons donated by Ca forming an "H 4" unit as the building block in the construction of the three-dimensional sodalite cage. This unique structure has a partial occupation of the degenerated orbitals at the zone center. The resultant dynamic Jahn-Teller effect helps to enhance electron-phonon coupling and leads to superconductivity of CaH 6. A superconducting critical temperature (T c ) of 220-235 K at 150 GPa obtained from the solution of the Eliashberg equations is the highest among all hydrides studied thus far.

Author supplied keywords

Cite

CITATION STYLE

APA

Wang, H., Tse, J. S., Tanaka, K., Iitaka, T., & Ma, Y. (2012). Superconductive sodalite-like clathrate calcium hydride at high pressures. Proceedings of the National Academy of Sciences of the United States of America, 109(17), 6463–6466. https://doi.org/10.1073/pnas.1118168109

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free