There is intense interest in induction and characterization of strain-transcending neutralizing Ab against antigenically variable human pathogens. We have recently identified the human malaria parasite Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) as a target of broadly neutralizing Abs, but there is little information regarding the functional mechanism(s) of Ab-mediated neutralization. In this study, we report that vaccine-induced polyclonal anti-PfRH5 Abs inhibit the tight attachment of merozoites to erythrocytes and are capable of blocking the interaction of PfRH5 with its receptor basigin. Furthermore, by developing anti-PfRH5 mAbs, we provide evidence of the following: 1) the ability to block the PfRH5–basigin interaction in vitro is predictive of functional activity, but absence of blockade does not predict absence of functional activity; 2) neutralizing mAbs bind spatially related epitopes on the folded protein, involving at least two defined regions of the PfRH5 primary sequence; 3) a brief exposure window of PfRH5 is likely to necessitate rapid binding of Ab to neutralize parasites; and 4) intact bivalent IgG contributes to but is not necessary for parasite neutralization. These data provide important insight into the mechanisms of broadly neutralizing anti-malaria Abs and further encourage anti-PfRH5–based malaria prevention efforts.
CITATION STYLE
Douglas, A. D., Williams, A. R., Knuepfer, E., Illingworth, J. J., Furze, J. M., Crosnier, C., … Draper, S. J. (2014). Neutralization of Plasmodium falciparum Merozoites by Antibodies against PfRH5. The Journal of Immunology, 192(1), 245–258. https://doi.org/10.4049/jimmunol.1302045
Mendeley helps you to discover research relevant for your work.