Numerical investigation on the effects of bore reduction in a high performance turbocharged GDI engine. 3D investigation of knock tendency

26Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Downsizing is a must for current high performance turbocharged SI engines. This is often achieved through the reduction of cylinder number, while keeping constant unit displacement and increasing boost pressure. However, the ensuing higher loads strongly increases the risk of abnormal combustion and thermo-mechanical failures. An alternative path to downsizing is the reduction of cylinder bore: this approach is more expensive, requiring a brand new design of the combustion system, but it also provides some advantages. The goal of the present paper is to explore the potential of bore reduction for achieving a challenging downsizing target, while preserving the engine knock safety margins. A current V8 GDI turbocharged sporting engine is taken as a reference, and a preliminary CFD-3D analysis is carried out in order to define the most suitable bore-to-stroke ratio. On this basis, bore is reduced by 11% at constant stroke, thus obtaining a reduction of about 20% on the engine displacement. In order to achieve the same peak power target, both engine boost and spark advance are adjusted until the knock safety margin of the original engine is met. 3D CFD tools, accurately calibrated on the reference engine, are used to address engine design and the calibration of the operating parameters.

Author supplied keywords

Cite

CITATION STYLE

APA

Severi, E., D’Adamo, A., Berni, F., Breda, S., Lugli, M., & Mattarelli, E. (2015). Numerical investigation on the effects of bore reduction in a high performance turbocharged GDI engine. 3D investigation of knock tendency. In Energy Procedia (Vol. 81, pp. 846–855). Elsevier Ltd. https://doi.org/10.1016/j.egypro.2015.12.094

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free