The normal development of anthers and the formation of functional pollen are the prerequisites for successful pollination and fertilization. In this study, we observed dynamic changes in inflorescence and anther development in the chinquapin (Castanea henryi) using stereomicroscopy, light microscopy, and transmission electron microscopy. We found that cytokinesis during meiosis in microsporocytes was of the simultaneous type, and that the tetrads were mainly tetrahedral. Mature pollen grains contained two cells with three germ pores. The anther wall was of the basic type and composed of epidermis, endothecium, middle layers, and tapetum. Mature anthers had no middle layer and tapetum. The tapetum was of the glandular type. At the early microspore stage, a large number of starch granules appeared in the endothecium, which was deformed at the late microspore stage. Lipid droplets appeared in tapetum during the early microspore stage, and a few lipid droplets were still found during tapetum degeneration. The mature pollen accumulated a large amount of starch and lipids. These findings demonstrated that the anther wall provides nutrients and protection for pollen development. There is relatively stable correspondence between the external morphological characteristics of male flowers and internal structure of anther development.
CITATION STYLE
Zhong, W., Zhu, Z., Ouyang, F., Qiu, Q., Fan, X., & Yuan, D. (2020). A cytological study of anther and pollen development in Chinquapin (Castanea henryi). HortScience, 55(6), 945–950. https://doi.org/10.21273/HORTSCI14934-20
Mendeley helps you to discover research relevant for your work.