Aberrant Exon 8/8a Splicing by Downregulated PTBP (Polypyrimidine Tract-Binding Protein) 1 Increases CaV1.2 Dihydropyridine Resistance to Attenuate Vasodilation

8Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Objective: Calcium channel blockers, such as dihydropyridines, are commonly used to inhibit enhanced activity of vascular CaV1.2 channels in hypertension. However, patients who are insensitive to such treatments develop calcium channel blocker-resistant hypertension. The function of CaV1.2 channel is diversified by alternative splicing, and the splicing factor PTBP (polypyrimidine tract-binding protein) 1 influences the utilization of mutually exclusive exon 8/8a of the CaV1.2 channel during neuronal development. Nevertheless, whether and how PTBP1 makes a role in the calcium channel blocker sensitivity of vascular CaV1.2 channels, and calcium channel blocker-induced vasodilation remains unknown. Approach and Results: We detected high expression of PTBP1 and, inversely, low expression of exon 8a in CaV1.2 channels (CaV1.2E8a) in rat arteries. In contrast, the opposite expression patterns were observed in brain and heart tissues. In comparison to normotensive rats, the expressions of PTBP1 and CaV1.2E8achannels were dysregulated in mesenteric arteries of hypertensive rats. Notably, PTBP1 expression was significantly downregulated, and CaV1.2E8achannels were aberrantly increased in dihydropyridine-resistant arteries compared with dihydropyridine-sensitive arteries of rats and human. In rat vascular smooth muscle cells, PTBP1 knockdown resulted in shifting of CaV1.2 exon 8 to 8a. Using patch-clamp recordings, we demonstrated a concomitant reduction of sensitivity of CaV1.2 channels to nifedipine, due to the higher expression of CaV1.2E8aisoform. In vascular myography experiments, small interfering RNA-mediated knockdown of PTBP1 attenuated nifedipine-induced vasodilation of rat mesenteric arteries. Conclusions: PTBP1 finely modulates the sensitivities of CaV1.2 channels to dihydropyridine by shifting the utilization of exon 8/8a and resulting in changes of responses in dihydropyridine-induced vasodilation.

Cite

CITATION STYLE

APA

Lei, J., Liu, X., Song, M., Zhou, Y., Fan, J., Shen, X., … Wang, J. (2020). Aberrant Exon 8/8a Splicing by Downregulated PTBP (Polypyrimidine Tract-Binding Protein) 1 Increases CaV1.2 Dihydropyridine Resistance to Attenuate Vasodilation. Arteriosclerosis, Thrombosis, and Vascular Biology, 40(10), 2440–2453. https://doi.org/10.1161/ATVBAHA.120.315010

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free