Ice coring of temperate and polythermal glaciers demonstrates some limitations of most electromechanical (EM) and thermal electric (TE) drills. Most TE drills are heavy, require a heavy power system, work slowly and cannot operate in boreholes going through the cold-temperate ice transition. Antifreeze thermal electric drills (ATED) are capable of operating in polar ice caps, polythermal and temperate glaciers, in boreholes filled with water and/or hydrophilic fluids. Performance of the ATED drill can be improved by using an open-top core barrel and low-power and narrow-kerf coring head. ATED-type drills can be modified for an open-top core barrel equipped with low-power coring head and include a new scheme for drilling-fluid circulation using two pumps. A small metering pump releases pure ethanol above the top of the drill, and a second pump enables circulation of the borehole fluid, an ethanol-water solution (EWS), above the kerf. Use of a narrow-kerf coring head reduces power requirements and makes it possible to design a lightweight drilling system that includes the EM and TE drills for shallow and intermediate-depth drilling.
CITATION STYLE
Zagorodnov, V., & Thompson, L. G. (2014). Thermal electric ice-core drills: History and new design options for intermediate-depth drilling. Annals of Glaciology, 55(68), 322–330. https://doi.org/10.3189/2014AoG68A012
Mendeley helps you to discover research relevant for your work.