Expression profiling of the transient receptor potential vanilloid (TRPV) channels 1, 2, 3 and 4 in mucosal epithelium of human ulcerative colitis

44Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

Abstract

The Transient Receptor Potential (TRP) family of selective and non-selective ion channels is well represented throughout the mammalian gastrointestinal track. Several members of the Transient Receptor Potential Vanilloid (TRPV) subfamily have been identified in contributing to modulation of mobility, secretion and sensitivity of the human intestine. Previous studies have focused on the detection of TRPV mRNA levels in colon tissue of patients with inflammatory bowel disease (IBD) whereas little information exists regarding TRPV channel expression in the colonic epithelium. The aim of this study was to evaluate the expression levels of TRPV1, TRPV2, TRPV3 and TRPV4 in mucosa epithelial cells of colonic biopsies from patients with ulcerative colitis (UC) in comparison to colonic resections from non-IBD patients (control group). Immunohistochemistry, using specific antibodies and quantitative analyses of TRPV-immunostained epithelial cells, was performed in semi-serial sections of the samples. TRPV1 expression was significantly decreased whereas TRPV4 expression was significantly increased in the colonic epithelium of UC patients compared to patients in the control group (p < 0.05). No significant difference for TRPV2 and TRPV3 expression levels between UC and control specimens was detected (p > 0.05). There was no correlation between TRPV channel expression and the clinical features of the disease (p > 0.05). Further investigation is needed to clarify the role of TRPV channels in human bowel inflammatory response.

Cite

CITATION STYLE

APA

Rizopoulos, T., Papadaki-Petrou, H., & Assimakopoulou, M. (2018). Expression profiling of the transient receptor potential vanilloid (TRPV) channels 1, 2, 3 and 4 in mucosal epithelium of human ulcerative colitis. Cells, 7(6). https://doi.org/10.3390/cells7060061

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free