Cobalamin in inflammation III - Glutathionylcobalamin and methylcobalamin/adenosylcobalamin coenzymes: The sword in the stone? How cobalamin may directly regulate the nitric oxide synthases

13Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Several mysteries surround the structure and function of the nitric oxide synthases (NOS). The NOS oxygenase domain structure is unusually open with a large area of solvent that could accommodate an unidentified ligand. The exact mechanism of the two-step five-electron monoxygenation of arginine to NG-hydroxy-l-arginine, thence to citrulline and nitric oxide (NO), is not clear, particularly as arginine/NG-hydroxy-l-arginine is bound at a great distance to the supposed catalytic heme Fe [III], as the anti-stereoisomer. The Return of the Scarlet Pimpernel Paper proposed that cobalamin is a primary indirect regulator of the NOS. An additional direct regulatory effect of the 'base-off' dimethylbenzimidazole of glutathionylcobalamin (GSCbl), which may act as a sixth ligand to the heme iron, promote Co-oriented, BH4/BH3 radical catalysed oxidation of l-arginine to NO, and possibly regulate the rate of inducible NOS/NO production by the NOS dimers, is further advanced. The absence of homology between the NOS and methionine synthase/methylmalonyl CoA mutase may enable GSCbl to regulate both sets of enzymes simultaneously by completely separate mechanisms. Thus, cobalamin may exert central control over both pro- and anti-inflammatory systems. © 2007 Informa UK Ltd.

Cite

CITATION STYLE

APA

Wheatley, C. (2007). Cobalamin in inflammation III - Glutathionylcobalamin and methylcobalamin/adenosylcobalamin coenzymes: The sword in the stone? How cobalamin may directly regulate the nitric oxide synthases. Journal of Nutritional and Environmental Medicine, 16(3–4), 212–226. https://doi.org/10.1080/13590840701791863

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free