Rapid identification of Candida dubliniensis with commercial yeast identification systems

117Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Candida dubliniensis is a newly described species that is closely related phylogenetically to Candida albicans and that is commonly associated with oral candidiasis in human immunodeficiency virus-positive patients. Several recent studies have attempted to elucidate phenotypic and genotypic characteristics of use in separating the two species. However, results obtained with simple phenotypic tests were too variable and tests that provided more definitive data were too complex for routine use in the clinical laboratory setting. The objective of this study was to determine if reproducible identification of C. dubliniensis could be obtained with commercial identification kits. The substrate reactivity profiles of 80 C. dubliniensis isolates were obtained by using the API 20C AUX, ID 32 C, Rapid Yeast Plus, VITEK YBC, and VITEK 2 ID-YST systems. The percentages of C. dubliniensis isolates capable of assimilating or hydrolyzing each substrate were compared with the percentages from the C. albicans profiles in each kit's database, and the results were expressed as percent C. dubliniensis and percent C. albicans. Any substrate that showed >50% difference in reactivity was considered useful in differentiating the species. In addition, assimilation of methyl-α-D-glucoside (MDG), D-trehalose (TRE), and D-xylose (XYL) by the same isolates was investigated by the traditional procedure of Wickerham and Burton (L. J. Wickerham and K. A. Burton, J. Bacteriol. 56:363- 371, 1948). At 48 h (the time recommended by the manufacturer for its new database), we found that the assimilation of four carbohydrates in the API 20C AUX system could be used to distinguish the species, i.e., glycerol (GLY; 88 and 14%), XYL (0 and 88%), MDG (0 and 85%), and TRE (15 and 97%). Similarly, results with the ID 32 C system at 48 h showed that XYL (0 and 98%), MDG (0 and 98%), lactate (LAT; 0 and 96%), and TRE (30 and 96%) could be used to separate the two species. Phosphatase (PHS; 9 and 76%) and α-D- glucosidase (23 and 94%) proved to be the most useful for separation of the species in the Rapid Yeast Plus system. While at 24 h the profiles obtained with the VITEK YBC system showed that MDG (10 and 95%), XYL (0 and 95%), and GLY (26 and 80%) could be used to separate the two species, at 48 h only XYL (6 and 95%) could be used to separate the two species. The most useful substrates in the VITEK 2 ID-YST system were TRE (1 and 89%), MDG (1 and 99%), LAT (4 and 98%), and PHS (83 and 1%). While the latter kit was not yet commercially available at the time of the study, it would appear to be the most valuable for the identification of C. dubliniensis. Although assimilation of MDG, TRE, and XYL proved to be the most useful for species differentiation by the majority of commercial systems, the results with these carbohydrates by the Wickerham and Burton procedure were essentially the same for both species, albeit following protracted incubation. Thus, it is the rapidity of the assimilation achieved with the commercial systems that allows the differentiation of C. dubliniensis from C. albicans.

Cite

CITATION STYLE

APA

Pincus, D. H., Coleman, D. C., Pruitt, W. R., Padhye, A. A., Salkin, I. F., Geimer, M., … Hearn, V. (1999). Rapid identification of Candida dubliniensis with commercial yeast identification systems. Journal of Clinical Microbiology, 37(11), 3533–3539. https://doi.org/10.1128/jcm.37.11.3533-3539.1999

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free