Ultrafast Carrier and Lattice Dynamics in Plasmonic Nanocrystalline Copper Sulfide Films

17Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Excited carrier dynamics in plasmonic nanostructures determines many important optical properties such as nonlinear optical response and photocatalytic activity. Here it is shown that mesoscopic plasmonic covellite nanocrystals with low free-carrier concentration exhibit a much faster carrier relaxation than in traditional plasmonic materials. A nonequilibrium hot-carrier population thermalizes within first 20 fs after photoexcitation. A decreased thermalization time in nanocrystals compared to a bulk covellite is consistent with the reduced Coulomb screening in ultrathin films. The subsequent relaxation of thermalized, equilibrium electron gas is faster than in traditional plasmonic metals due to the lower carrier concentration and agrees well with that in a bulk covellite showing no evidence of quantum confinement or hot-hole trapping at the surface states. The excitation of coherent optical phonon modes in a covellite is also demonstrated, revealing coherent lattice dynamics in plasmonic materials, which until now was mainly limited to dielectrics, semiconductors, and semimetals. These findings show advantages of this new mesoscopic plasmonic material for active control of optical processes.

Cite

CITATION STYLE

APA

Bykov, A. Y., Shukla, A., van Schilfgaarde, M., Green, M. A., & Zayats, A. V. (2021). Ultrafast Carrier and Lattice Dynamics in Plasmonic Nanocrystalline Copper Sulfide Films. Laser and Photonics Reviews, 15(3). https://doi.org/10.1002/lpor.202000346

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free