Moho estimation using GOCE data: A numerical simulation

28Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The GOCE mission, exploiting for the first time the concept of satellite gradiometry, promises to estimate the Earth's gravitational field from space with unprecedented accuracy and spatial resolution. Also inverse gravimetric problems can get benefit from GOCE observations. In this work the general problem of estimating the discontinuity surface between two layers of different density is investigated. A possible solution based on a local Fourier analysis and Wiener deconvolution of satellite data (such as gravitational potential and its second radial derivative) is proposed. Moreover a numerical method to combine in an efficient way gridded satellite data with sparse ground data, like gravity anomalies, has been implemented. Numerical simulations on different synthetic Moho profiles have been carried out. Finally a two-dimensional simulation on realistic data over the Alps has been set up. The results confirm that GOCE data can significantly contribute to the detection of geophysical structures, leading to a much better determination of the signal long wavelengths (up to about 200 km). The use of local ground data improves the satellite-only estimate, making possible the recovery of higher resolution details. © Springer-Verlag Berlin Heidelberg 2012.

Cite

CITATION STYLE

APA

Reguzzoni, M., & Sampietro, D. (2012). Moho estimation using GOCE data: A numerical simulation. In International Association of Geodesy Symposia (Vol. 136, pp. 205–214). https://doi.org/10.1007/978-3-642-20338-1_25

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free