Activation of TLR4 by the endotoxin LPS is a critical event in the pathogenesis of Gram-negative sepsis. Caveolin-1, the signaling protein associated with caveolae, is implicated in regulating the lung inflammatory response to LPS; however, the mechanism is not understood. In this study, we investigated the role of caveolin-1 in regulating TLR4 signaling in endothelial cells. We observed that LPS interaction with CD14 in endothelial cells induced Src-dependent caveolin-1 phosphorylation at Tyr14. Using a TLR4-MD2-CD14–transfected HEK-293 cell line and caveolin-1–deficient (cav-1−/−) mouse lung microvascular endothelial cells, we demonstrated that caveolin-1 phosphorylation at Tyr14 following LPS exposure induced caveolin-1 and TLR4 interaction and, thereby, TLR4 activation of MyD88, leading to NF-κB activation and generation of proinflammatory cytokines. Exogenous expression of phosphorylation-deficient Y14F caveolin-1 mutant in cav-1−/− mouse pulmonary vasculature rendered the mice resistant to LPS compared with reintroduction of wild-type caveolin-1. Thus, caveolin-1 Y14 phosphorylation was required for the interaction with TLR4 and activation of TLR4-MyD88 signaling and sepsis-induced lung inflammation. Inhibiting caveolin-1 Tyr14 phosphorylation and resultant inactivation of TLR4 signaling in pulmonary vascular endothelial cells represent a novel strategy for preventing sepsis-induced lung inflammation and injury.
CITATION STYLE
Jiao, H., Zhang, Y., Yan, Z., Wang, Z.-G., Liu, G., Minshall, R. D., … Hu, G. (2013). Caveolin-1 Tyr14 Phosphorylation Induces Interaction with TLR4 in Endothelial Cells and Mediates MyD88-Dependent Signaling and Sepsis-Induced Lung Inflammation. The Journal of Immunology, 191(12), 6191–6199. https://doi.org/10.4049/jimmunol.1300873
Mendeley helps you to discover research relevant for your work.