Elevated Carbon Dioxide and Soil Moisture on Early Growth Response of Soybean

  • Madhu M
  • Hatfield J
N/ACitations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

Interactions between elevated [CO2] and soil water availability have the potential impact on crops and future food security of the world. The study was conducted to investigate vegetative growth response of soybeans under two [CO2] (380 and 800 μmol mol-1) with three soil moisture levels in controlled environment. Slow growth rate and altered crop phenology of soybeans were observed under elevated [CO2] at early stage (V-3/V-4), but showed positive physiologically response at later stage (R3) indicating adoptive mechanism of plants to high [CO2]. Elevated [CO2] decreases the number of leaves by 23% and 14% and reduces in leaf areas by 11.7% and 9.7% compared with ambient [CO2] at 29 and 44 days after planting (DAP), respectively. Adaptive mechanism of plants to high [CO2] produced 39% and 83.7% greater leaf number and leaf areas, respectively at later stage (R3) of the crop growth (59 DAP). There was a reduction in a specific leaf area (SLA) at 29 DAP (22.2%) but an increase at 44 DAP (1.4%) and 58 DAP (8.5%) under elevated [CO2]. Dry matter production of plants was increased significantly for elevated [CO2]. Increase in leaf C (<1%) and reduction in N concentration (6.0% - 9.5%) increased the C:N ratio of soybean leaves (4.4% - 12.98%) under elevated [CO2]. Elevated [CO2] with normal soil moisture condition produced a maximum number of pods (54.8% - 122.4%) and an increase in dry weight of pods (29.8% - 56.6%). Plants under elevated [CO2] produced significantly greater numbers of root nodules per plant by 114% compared with plants under ambient [CO2] at 44 DAP. These results show a direct and interactive effect of elevated [CO2] and soil moisture on plant growth that will affect not only the global food security but also nutritional security.

Cite

CITATION STYLE

APA

Madhu, M., & Hatfield, J. L. (2015). Elevated Carbon Dioxide and Soil Moisture on Early Growth Response of Soybean. Agricultural Sciences, 06(02), 263–278. https://doi.org/10.4236/as.2015.62027

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free