Pantothenate kinase (PanK) catalyzes the first step in the biosynthesis of the essential and ubiquitous cofactor coenzyme A (CoA) in all organisms. Two well characterized isoforms of the enzyme are known: a prokaryotic PanK that predominates in eubacteria and a eukaryotic isoform that has primarily been characterized from mammalian and plant sources. Curiously, the genomes of certain pathogenic bacteria, including Helicobacter pylori and Pseudomonas aeruginosa, do not contain a PanK similar to either isoform, although these organisms possess all the other biosynthetic machinery required for CoA production. In this study we cloned, overexpressed and characterized an enzyme from Bacillus subtilis and its homologue from H. pylori and show that they catalyze the ATP-dependent phosphorylation of pantothenate. These enzymes do not share sequence homology with any known PanK, and unlike the bacterial and eukaryotic PanK isoforms their activity is not regulated by either CoA or acetyl-CoA. They also do not accept the pantothenic acid antimetabolite N-pentylpantothenamide as a substrate or are inhibited by it. Taken together, these results point to the identification of a third distinct isoform of PanK that accounts for the only known activity of the enzyme in pathogens such as H. pylori and P. aeruginosa. © 2005 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Brand, L. A., & Strauss, E. (2005). Characterization of a new pantothenate kinase isoform from Helicobacter pylori. Journal of Biological Chemistry, 280(21), 20185–20188. https://doi.org/10.1074/jbc.C500044200
Mendeley helps you to discover research relevant for your work.