Structurally Informed Mutagenesis of a Stereochemically Promiscuous Aldolase Produces Mutants That Catalyze the Diastereoselective Syntheses of All Four Stereoisomers of 3-Deoxy-hexulosonic Acid

2Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A 2-keto-3-deoxygluconate aldolase from the hyperthermophile Sulfolobus solfataricus catalyzes the nonstereoselective aldol reaction of pyruvate and d-glyceraldehyde to produce 2-keto-3-deoxygluconate (d-KDGlc) and 2-keto-3-deoxy-d-galactonate (d-KDGal). Previous investigations into curing the stereochemical promiscuity of this hyperstable aldolase used high-resolution structures of the aldolase bound to d-KDGlc or d-KDGal to identify critical amino acids involved in substrate binding for mutation. This structure-guided approach enabled mutant variants to be created that could stereoselectively catalyze the aldol reaction of pyruvate and natural d-glyceraldehyde to selectively afford d-KDGlc or d-KDGal. Here we describe the creation of two further mutants of this Sulfolobus aldolase that can be used to catalyze aldol reactions between pyruvate and non-natural l-glyceraldehyde to enable the diastereoselective synthesis of l-KDGlc and l-KDGal. High-resolution crystal structures of all four variant aldolases have been determined (both unliganded and liganded), including Variant 1 with d-KDGlc, Variant 2 with pyruvate, Variant 3 with l-KDGlc, and Variant 4 with l-KDGal. These structures have enabled us to rationalize the observed changes in diastereoselectivities in these variant-catalyzed aldol reactions at a molecular level. Interestingly, the active site of Variant 4 was found to be sufficiently flexible to enable catalytically important amino acids to be replaced while still retaining sufficient enzymic activity to enable production of l-KDGal.

Cite

CITATION STYLE

APA

Royer, S. F., Gao, X., Groleau, R. R., Van Der Kamp, M. W., Bull, S. D., Danson, M. J., & Crennell, S. J. (2022). Structurally Informed Mutagenesis of a Stereochemically Promiscuous Aldolase Produces Mutants That Catalyze the Diastereoselective Syntheses of All Four Stereoisomers of 3-Deoxy-hexulosonic Acid. ACS Catalysis, 12(18), 11444–11455. https://doi.org/10.1021/acscatal.2c03285

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free