Source credibility plays the central route: an elaboration likelihood model exploration in social media environment with demographic profile analysis

  • Li H
  • See-To E
N/ACitations
Citations of this article
69Readers
Mendeley users who have this article in their library.

Abstract

Purpose This study aims at building a framework for the electronic word-of-mouth (eWOM) response under the social media environment. The elaboration likelihood model was adopted to explain how message source credibility and message appeal jointly influence the eWOM response process, while source credibility provides a central route and message appeal plays a peripheral route for information processing. Design/methodology/approach This study used a scenario design to test the decision behavior in the Facebook environment through message content manipulation. A convenience sampling method was adopted in this study. We collected 203 valid questionnaires and tested this research model with LISREL 8.8. This study used a two-stage structural equation modeling data analysis method with LISREL 8.8, by which the measurement model was assessed through confirmatory factor analysis for the reliability and validity of the research model, and the causal relationship among factors was assessed through exploratory factor analysis . Findings The results showed that 53% variance of eWOM responses could be explained by message source credibility and emotional message appeal from the elaboration likelihood model perspective. Message source credibility plays a central role in the social media environment. The model was further tested with a demographic profile analysis for both gender and age. It is found that a female user is influenced by both source credibility and emotional appeal, but a male user is only influenced by message source credibility. The mature age group is more responsive to eWOM messages. Research limitations/implications The sample might not represent all social networking sites (SNS) users. The participants represent a small segment of the Facebook population around the globe. Secondly, this research design could be improved by using more recreational messages to test the effects of message appeal and message source credibility. Thirdly, the mobile phone is a type of physical product rather than an experiential product. Future studies could try to identify the same eWOM determinants with different SNS functions, for example, the inbox message function. Similarly, Facebook users are allowed to use both text and pictures to disseminate promotional messages. Practical implications This study provides an insight for SNS administrators regarding the determinants of driving more customer responses toward a message. Message source credibility and message appeal are identified as the antecedents for eWOM responses in SNS. Companies could make use of this finding to improve their marketing communication strategy in SNS. The finding can inform administrators of the importance of focusing on both customers’ psychological state and message attributes during the dissemination of promotional messages to improve the efficiency of the promotional effort. Companies aimed at receiving different types of eWOM responses in SNS may need to consider other factors for creating their promotional messages. Originality/value Previous studies have mainly identified factors influencing eWOM responses from the people-centered variables such as personal traits and social relationships. This study proposes that the eWOM response is a dual information processing process that can be explained by the ELM. When a user processes information in SNS, he follows both the central route and the peripheral route (i.e. source credibility and message appeal) which can influence the eWOM response. It is the first time that the source credibility is investigated as the central route in ELM model.

Cite

CITATION STYLE

APA

Li, H., & See-To, E. W. K. (2024). Source credibility plays the central route: an elaboration likelihood model exploration in social media environment with demographic profile analysis. Journal of Electronic Business & Digital Economics, 3(1), 36–60. https://doi.org/10.1108/jebde-10-2022-0038

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free