Lucilia sericata larvae, or green bottle fly maggots are applied to chronic wounds to aid healing. Previously, our laboratory has characterized the enzymatic activities present within maggot excretions/secretions (ES). Since then, we have related these to the degradation of extracellular matrix components, alteration of human, dermal fibroblast adhesion to surfaces and the stimulation of fibroblast migration within a two-dimensional in vitro assay. In this study, we developed a novel three-dimensional in vitro assay in which to observe fibroblast migration and morphology in response to maggot ES. Here, primary human foreskin fibroblasts were embedded within collagen gels containing fibronectin. Phase contrast and confocal microscopy were used in conjunction with image analysis software to examine and quantify aspects of fibroblast behavior. Our results showed that maggot ES stimulated fibroblast migration through the matrix and induced altered cell morphologies. Remodelling of the extracellular matrix located between individual fibroblasts was also induced, providing a mechanism by which cells may detect each other's presence over considerable distances. Thus, mechanisms by which maggots enhance tissue formation within wounds may be via the promotion of fibroblast motility, acceleration of extracellular matrix remodelling and coordination of cellular responses. © 2006 The Society for Investigative Dermatology.
CITATION STYLE
Horobin, A. J., Shakesheff, K. M., & Pritchard, D. I. (2006). Promotion of human dermal fibroblast migration, matrix remodelling and modification of fibroblast morphology within a novel 3D model by Lucilia sericata larval secretions. Journal of Investigative Dermatology, 126(6), 1410–1418. https://doi.org/10.1038/sj.jid.5700256
Mendeley helps you to discover research relevant for your work.