An antioxidant ameliorates allergic airway inflammation by inhibiting HDAC 1 via HIF-1α/VEGF axis suppression in mice

6Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Histone deacetylase inhibitors (HDACi) are novel class of drugs as they are involved in post translational modification of several proteins involved in signaling pathways related to asthma. HDACi have been reported to elicit protective effects on asthma but the signaling pathways associated with it have not been investigated much. Recently, we have demonstrated that intranasal administrations of Pan-HDAC inhibitors, sodium butyrate and curcumin, which have effectively reduced asthma severity via HDAC1 inhibition in Ovalbumin induced mouse model. Present study aimed to investigate possible pathways by which curcumin and sodium butyrate may minimize asthma pathogenesis via HDAC 1 inhibition. Balb/c mice were exposed (sensitized and challenged) with Ovalbumin to establish allergic asthma model followed by pretreatment of curcumin (5 mg/kg) and sodium butyrate (50 mg/kg) through intranasal route. Effects of curcumin and sodium butyrate on HIF-1α/VEGF signaling through activation of PI3K/Akt axis has been investigated using protein expressions followed by chromatin immunoprecipitation of BCL2 and CCL2 against HDAC1. Molecular docking analysis was also performed to investigate effects of curcumin and butyrate on mucus hypersecretion, goblet cell hyperplasia and airway hyperresponsiveness. Augmented expressions of HDAC-1, HIF-1α, VEGF, p-Akt and p-PI3K were observed in asthmatic group which was suppressed in both the treatments. NRF-2 level was significantly restored by curcumin and butyrate treatments. Protein expressions of p-p38, IL-5 and mRNA expressions of GATA-3 were also reduced in curcumin and butyrate treatment groups. Our findings suggest that curcumin and sodium butyrate may attenuate airway inflammation via down regulation of p-Akt/p-PI3K/HIF-1α/VEGF axis.

Cite

CITATION STYLE

APA

Islam, R., Dash, D., & Singh, R. (2023). An antioxidant ameliorates allergic airway inflammation by inhibiting HDAC 1 via HIF-1α/VEGF axis suppression in mice. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-36678-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free