Site-specific integration and expression of an anti-malarial gene in transgenic Anopheles gambiae significantly reduces Plasmodium infections

76Citations
Citations of this article
118Readers
Mendeley users who have this article in their library.

Abstract

Diseases transmitted by mosquitoes have a devastating impact on global health and this is worsening due to difficulties with existing control measures and climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of novel control strategies. Historically the genetic modification of insects has relied upon transposable elements which have many limitations despite their successful use. To circumvent these limitations the Streptomyces phage phiC31 integrase system has been successfully adapted for sitespecific transgene integration in insects. Here, we present the first site-specific transformation of Anopheles gambiae, the principal vector of human malaria. Mosquitoes were initially engineered to incorporate the phiC31 targeting site at a defined genomic location. A second phase of genetic modification then achieved site-specific integration of Vida3, a synthetic anti-malarial gene. Expression of Vida3, specifically in the midgut of bloodfed females, offered consistent and significant protection against Plasmodium yoelii nigeriensis, reducing average parasite intensity by 85%. Similar protection was observed against Plasmodium falciparum in some experiments, although protection was inconsistent. In the fight against malaria, it is imperative to establish a broad repertoire of both anti-malarial effector genes and tissue-specific promoters for their expression, enabling those offering maximum effect with minimum fitness cost to be identified. In the future, this technology will allow effective comparisons and informed choices to be made, potentially leading to complete transmission blockade. © 2011 Meredith et al.

Cite

CITATION STYLE

APA

Meredith, J. M., Basu, S., Nimmo, D. D., Larget-Thiery, I., Warr, E. L., Underhill, A., … Eggleston, P. (2011). Site-specific integration and expression of an anti-malarial gene in transgenic Anopheles gambiae significantly reduces Plasmodium infections. PLoS ONE, 6(1). https://doi.org/10.1371/journal.pone.0014587

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free