Pythium root rot is one of the significant diseases of soybean (Glycine max (L.) Merr.) in the United States. The causal agent of the disease is a soil-borne oomycete pathogen Pythium irregulare, the most prevalent and aggressive species of Pythium in North Central United States. However, few studies have been conducted in soybean for the identification of quantitative trait loci (QTL) for tolerance to P. irregulare. In this study, two recombinant inbred line (RIL) populations (designated as POP1 and POP2) were challenged with P. irregulare (isolate CMISO2-5-14) in a greenhouse assay. POP1 and POP2 were derived from 'E09014' · 'E05226-T' and 'E05226-T' · 'E09088', and contained 113 and 79 lines, respectively. Parental tests indicated that 'E05226-T' and 'E09014' were more tolerant than 'E09088', while 'E09088' was highly susceptible to the pathogen. The disease indices, root weight of inoculation (RWI) and ratio of root weight (RRW) of both populations showed near normal distributions, with transgressive segregation, suggesting the involvement of multiple QTL from both parents contributed to the tolerance. All the lines were genotyped using Illumina Infinium BARCSoySNP6K iSelect BeadChip and yielded 1373 and 1384 polymorphic markers for POP1 and POP2, respectively. Notably, despite high density, polymorphic markers coverage was incomplete in some genomic regions. As such, 28 and 37 linkage groups were obtained in POP1 and POP2, respectively corresponding to the 20 soybean chromosomes. Using RRW, one QTL was identified in POP1 on Chromosome 20 that explained 12.7-13.3% of phenotypic variation. The desirable allele of this QTL was from 'E05226-T'. Another QTL was found in POP2 on Chromosome 11. It explained 15.4% of the phenotypic variation and the desirable allele was from 'E09088'. However, no QTL were identified using RWI in either population. These results supported that RRW was more suitable to be used to evaluate P. irregulare tolerance in soybean.
CITATION STYLE
Lin, F., Wani, S. H., Collins, P. J., Wen, Z., Gu, C., Chilvers, M. I., & Wang, D. (2018). Mapping quantitative trait loci for tolerance to pythium irregulare in soybean (glycine max L.). G3: Genes, Genomes, Genetics, 8(10), 3155–3161. https://doi.org/10.1534/g3.118.200368
Mendeley helps you to discover research relevant for your work.