Transcutaneous electrical spinal cord stimulation (tSCS) is a non-invasive technique for neuromodulation and has therapeutic potential for motor rehabilitation following spinal cord injury. The main aim of the present study is to quantify the effect of a single session of tSCS on lower limb motor evoked potentials (MEPs) in healthy participants. A double-blind, sham-controlled, randomized, crossover, clinical trial was carried out in 15 participants. Two 10-min sessions of tSCS (active-tSCS and sham-tSCS) were applied at the T11-T12 vertebral level. Quadriceps (Q) and tibialis anterior (TA) muscle MEPs were recorded at baseline, during and after tSCS. Q and TA isometric maximal voluntary contraction was also recorded. A significant increase of the Q-MEP amplitude was observed during active-tSCS (1.96 ± 0.3 mV) when compared from baseline (1.40 ± 0.2 mV; p = 0.01) and when compared to sham-tSCS at the same time-point (1.13 ± 0.3 mV; p = 0.03). No significant modulation was identified for TA-MEP amplitude or for Q and TA isometric maximal voluntary isometric strength. In conclusion, tSCS applied over the T11-T12 vertebral level increased Q-MEP but not TA-MEP compared to sham stimulation. The specific neuromodulatory effect of tSCS on Q-MEP may reflect optimal excitation of this motor response at the interneuronal or motoneuronal level.
CITATION STYLE
Megía-García, Á., Serrano-Muñoz, D., Taylor, J., Avendaño-Coy, J., Comino-Suárez, N., & Gómez-Soriano, J. (2020). Transcutaneous spinal cord stimulation enhances quadriceps motor evoked potential in healthy participants: A double-blind randomized controlled study. Journal of Clinical Medicine, 9(10), 1–16. https://doi.org/10.3390/jcm9103275
Mendeley helps you to discover research relevant for your work.