Analysis of expected skin burns from accepted process flare heat radiation levels to public passersby

1Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Hot flaring, even from quite high flare stacks, may result in significant heat radiation outside a facility to, e.g., public roads where random passersby may be exposed. The present study suggests a novel method for analyzing a typical flare heat radiation exposure and investigates skin burns that may be inflicted on an exposed person if a facility needs to depressurize in an emergency situation. A typical radiation field from an ignited natural gas vent was taken as the boundary condition, and these values were compared to radiation levels mentioned by the American Petroleum Institute (API 521), e.g., 1.58 kW/m2 and above. Due to facility perimeter fences along roads in larger industry areas, it was assumed that an exposed person may flee along a road rather than in the ideal direction away from the flare. It was assumed that naked skin, e.g., a bare shoulder or a bald head is exposed. The Pennes bioheat equation was numerically solved for the skin layers while the person escapes along the road. Sun radiation and convective heat exchange to the ambient air were included, and the subsequent skin injury was calculated based on the temperature development in the basal layer. Parameters affecting burn severity, such as heat radiation, solar radiation, and convective heat transfer coefficient, were analyzed. For small flares and ignited small cold vents, no skin burn would be expected for 1.58 kW/m2 or 3.16 kW/m2 maximum heat radiation at the skin surface. However, higher flare rates corresponding to, e.g., 4.0 kW/m2 maximum flare heat radiation to the skin, resulted both in higher basal layer temperatures and longer exposure time, thus increasing the damage integral significantly. It is demonstrated that the novel approach works well. In future studies, it may, e.g., be extended to cover escape through partly shielded escape routes.

Cite

CITATION STYLE

APA

Log, T. (2021). Analysis of expected skin burns from accepted process flare heat radiation levels to public passersby. Energies, 14(17). https://doi.org/10.3390/en14175474

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free