Recent data indicate that plasticity protocols have not only synapse-specific but also more widespread effects. In particular, in synaptic tagging and capture (STC), tagged synapses can capture plasticity-related proteins, synthesized in response to strong stimulation of other synapses. This leads to long-lasting modification of only weakly stimulated synapses. Here we present a biophysical model of synaptic plasticity in the hippocampus that incorporates several key results from experiments on STC. The model specifies a set of physical states in which a synapse can exist, together with transition rates that are affected by high- and low-frequency stimulation protocols. In contrast to most standard plasticity models, the model exhibits both early- and late-phase LTP/D, de-potentiation, and STC. As such, it provides a useful starting point for further theoretical work on the role of STC in learning and memory. © 2009 Barrett et al.
CITATION STYLE
Barrett, A. B., Billings, G. O., Morris, R. G. M., & Van Rossum, M. C. W. (2009). State based model of long-term potentiation and synaptic tagging and capture. PLoS Computational Biology, 5(1). https://doi.org/10.1371/journal.pcbi.1000259
Mendeley helps you to discover research relevant for your work.