Quantitative and functional pulsed arterial spin labeling in the human brain at 9.4 t

23Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Purpose The feasibility of multislice pulsed arterial spin labeling (PASL) of the human brain at 9.4 T was investigated. To demonstrate the potential of arterial spin labeling (ASL) at this field strength, quantitative, functional, and high-resolution (1.05 × 1.05 × 2 mm3) ASL experiments were performed. Methods PASL was implemented using a numerically optimized adiabatic inversion pulse and presaturation scheme. Quantitative measurements were performed at 3 T and 9.4 T and evaluated on a voxel-by-voxel basis. In a functional experiment, activation maps obtained with a conventional blood-oxygen-level-dependent (BOLD)-weighted sequence were compared with a functional ASL (fASL) measurement. Results Quantitative measurements revealed a 23% lower perfusion in gray matter and 17% lower perfusion in white matter at 9.4 T compared with 3 T. Furthermore almost identical transit delays and bolus durations were found at both field strengths whereas the calculated voxel volume corrected signal-to-noise ratio was 1.9 times higher at 9.4 T. This result was confirmed by the high-resolution experiment. The functional experiment yielded comparable activation maps for the fASL and BOLD measurements. Conclusion Although PASL at ultrahigh field strengths is limited by high specific absorption rate, functional and quantitative perfusion-weighted images showing a high degree of detail can be obtained.

Cite

CITATION STYLE

APA

Bause, J., Ehses, P., Mirkes, C., Shajan, G., Scheffler, K., & Pohmann, R. (2016). Quantitative and functional pulsed arterial spin labeling in the human brain at 9.4 t. Magnetic Resonance in Medicine, 75(3), 1054–1063. https://doi.org/10.1002/mrm.25671

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free