Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria

335Citations
Citations of this article
138Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Various proapoptotic stimuli increase the production of superoxide and H2O2 by mitochondria. Whereas superoxide impairs mitochondrial function and is removed by Mn2+-dependent superoxide dismutase, the role and metabolism of mitochondrial H2O2 during apoptosis have remained unclear. The effects on apoptotic signaling of depletion of peroxiredoxin (Prx) III, a mitochondrion-specific H 2O2-scavenging enzyme, have now been investigated by RNA interference in HeLa cells. Depletion of Prx III resulted in increased intracellular levels of H2O2 and sensitized cells to induction of apoptosis by staurosporine or TNF-α. The rates of mitochondrial membrane potential collapse, cytochrome c release, and caspase activation were increased in Prx III-depleted cells, and these effects were reversed by ectopic expression of Prx III or mitochondrion-targeted catalase. Depletion of Prx III also exacerbated damage to mitochondrial macromolecules induced by the proapoptotic stimuli. Our results suggest that Prx III is a critical regulator of the abundance of mitochondrial H2O2, which itself promotes apoptosis in cooperation with other mediators of apoptotic signaling.

Cite

CITATION STYLE

APA

Chang, T. S., Cho, C. S., Park, S., Yu, S., Sang, W. K., & Sue, G. R. (2004). Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. Journal of Biological Chemistry, 279(40), 41975–41984. https://doi.org/10.1074/jbc.M407707200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free