Due to the lack of grid power availability in rural areas, hybrid renewable energy sources are integrated with microgrids to distribute reliable power to remote locations. This optimal hybrid system is created using a solar photovoltaic system, wind turbine, diesel generator, battery storage system, converter, electrolyzer and hydrogen tank to provide uninterrupted power and meet different load demands of different communities in Doddipalli village, Chittoor, Andhra Pradesh, India. Optimization and techno-economic analysis are performed to design the proposed system using HOMER Software. Various configurations are obtained from the software among which the best four combinations are considered for case studies. This research article aims to design the optimal hybrid renewable energy system, wherein the design consists of PV/BS (1476 kW-solar PV, 417 batteries, electrolyser-200 kW, hydrogen tank-20 kg and 59.6 kW-converter) by comparing the minimum net present cost (NPC: $7.01 M), levelized cost of energy (LCOE: 0.244 $/kWh), and the high renewable fraction (RF: 84.1%). In this research, the proposed system would be more economical when solar energy becomes the primary source and is integrated with the battery. This research also presents a sensitivity analysis of the off-grid HRES system with various electrical load demands, project lifetime, and derating factors.
CITATION STYLE
Nallolla, C. A., & Vijayapriya, P. (2022). Optimal Design of a Hybrid Off-Grid Renewable Energy System Using Techno-Economic and Sensitivity Analysis for a Rural Remote Location. Sustainability (Switzerland), 14(22). https://doi.org/10.3390/su142215393
Mendeley helps you to discover research relevant for your work.