Boundedness for a Fully Parabolic Keller–Segel Model with Sublinear Segregation and Superlinear Aggregation

29Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This work deals with a fully parabolic chemotaxis model with nonlinear production and chemoattractant. The problem is formulated on a bounded domain and, depending on a specific interplay between the coefficients associated to such production and chemoattractant, we establish that the related initial-boundary value problem has a unique classical solution which is uniformly bounded in time. To be precise, we study this zero-flux problem {ut=Δu−∇⋅(f(u)∇v) in Ω×(0,Tmax),vt=Δv−v+g(u) in Ω×(0,Tmax), where Ω is a bounded and smooth domain of Rn, for n≥ 2 , and f(u) and g(u) are reasonably regular functions generalizing, respectively, the prototypes f(u) = uα and g(u) = ul, with proper α, l> 0. After having shown that any sufficiently smooth u(x, 0) = u(x) ≥ 0 and v(x, 0) = v(x) ≥ 0 produce a unique classical and nonnegative solution (u, v) to problem (◊), which is defined on Ω × (0 , Tmax) with Tmax denoting the maximum time of existence, we establish that for any l∈(0,2n) and 2n≤α<1+1n−l2, Tmax= ∞ and u and v are actually uniformly bounded in time. The paper is in line with the contribution by Horstmann and Winkler (J. Differ. Equ. 215(1):52–107, 2005) and, moreover, extends the result by Liu and Tao (Appl. Math. J. Chin. Univ. Ser. B 31(4):379–388, 2016). Indeed, in the first work it is proved that for g(u) = u the value α=2n represents the critical blow-up exponent to the model, whereas in the second, for f(u) = u, corresponding to α= 1 , boundedness of solutions is shown under the assumption 0

Cite

CITATION STYLE

APA

Frassu, S., & Viglialoro, G. (2021). Boundedness for a Fully Parabolic Keller–Segel Model with Sublinear Segregation and Superlinear Aggregation. Acta Applicandae Mathematicae, 171(1). https://doi.org/10.1007/s10440-021-00386-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free