Superscalar coprocessor for high-speed curve-based cryptography

39Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We propose a superscalar coprocessor for high-speed curve-based cryptography. It accelerates scalar multiplication by exploiting instruction-Level parallelism (ILP) dynamically and processing multiple instructions in parallel. The system-level architecture is designed so that the coprocessor can fully utilize the superscalar feature. The implementation results show that scalar multiplication of Elliptic Curve Cryptography (ECC) over GF(2163), Hyperelliptic Curve Cryptography (HECC) of genus 2 over GF(283) and ECC over a composite field, GF((283) 2) can be improved by a factor of 1.8, 2.7 and 2.5 respectively compared to the case of a basic single-scalar architecture. This speed-up is achieved by exploiting parallelism in curve-based cryptography. The coprocessor deals with a single instruction that can be used for all field operations such as multiplications and additions. In addition, this instruction only allows one to compute point/divisor operations. Furthermore, we provide also a fair comparison between the three curve-based cryptosystems. © International Association for Cryptologic Research 2006.

Cite

CITATION STYLE

APA

Sakiyama, K., Batina, L., Preneel, B., & Verbauwhede, I. (2006). Superscalar coprocessor for high-speed curve-based cryptography. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 4249 LNCS, pp. 415–429). Springer Verlag. https://doi.org/10.1007/11894063_33

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free