Estimation of the Internal Dose Imparted by 18F-Fluorodeoxyglucose to Tissues by Using Fricke Dosimetry in a Phantom and Positron Emission Tomography

0Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Purpose: Assessment of the radiation dose delivered to a tumor and different organs is a major issue when using radiolabelled compounds for diagnostic imaging or endoradiotherapy. The present article reports on a study to correlate the mean 18F-fluorodeoxyglucose (18F-FDG) activity in different tissues measured in a mouse model by positron emission tomography (PET) imaging, with the dose assessed in vitro by Fricke dosimetry. Methods: The dose-response relationship of the Fricke dosimeter and PET data was determined at different times after adding 18F-FDG (0–80 MBq) to a Fricke solution (1 mM ferrous ammonium sulfate in 0.4 M sulfuric acid). The total dose was assessed at 24 h (~13 half-lives of 18F-FDG). The number of coincident events produced in 3 mL of Fricke solution or 3 mL of deionized water that contained 60 MBq of 18F-FDG was measured using the Triumph/LabPET8TM preclinical PET/CT scanner. The total activity concentration measured by PET was correlated with the calculated dose from the Fricke dosimeter, at any exposure activity of 18F-FDG. Results: The radiation dose measured with the Fricke dosimeter increased rapidly during the first 4 h after adding 18F-FDG and then gradually reached a plateau. Presence of non-radioactive-FDG did not alter the Fricke dosimetry. The characteristic responses of the dosimeter and PET imaging clearly exhibit linearity with injected activity of 18F-FDG. The dose (Gy) to time-integrated activity (MBq.h) relationship was measured, yielding a conversion factor of 0.064 ± 0.06 Gy/MBq.h in the present mouse model. This correlation provides an efficient alternative method to measure, three-dimensionally, the total and regional dose absorbed from 18F-radiotracers. Conclusions: The Fricke dosimeter can be used to calibrate a PET scanner, thus enabling the determination of dose from the measured radioactivity emitted by 18F-FDG in tissues. The method should be applicable to radiotracers with other positron-emitting radionuclides.

Cite

CITATION STYLE

APA

Tippayamontri, T., Betancourt-Santander, E., Guérin, B., Lecomte, R., Paquette, B., & Sanche, L. (2022). Estimation of the Internal Dose Imparted by 18F-Fluorodeoxyglucose to Tissues by Using Fricke Dosimetry in a Phantom and Positron Emission Tomography. Frontiers in Nuclear Medicine, 2. https://doi.org/10.3389/fnume.2022.815141

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free