Bending and Crack Evolution Behaviors of Cemented Soil Reinforced with Surface Modified PVA Fiber

10Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

To improve the flexural properties of cemented soils reinforced with fibers and avoid their brittle failure when subjected to complex loading conditions, a simple and cost-effective technique was explored to facilitate their application in retaining walls. In this study, how different fiber surface modifications, i.e., alkali treatment, acid treatment and silane coupling agent treatment, as well as different fiber contents, i.e., 0%, 0.25%, 0.5% and 1%, affect the bending properties of cemented soils was investigated by conducting three-point bending tests on notched beams. The digital image correlation (DIC) technology was used to examine the crack propagation process and the strain field distribution of cracks in specimens in the flexural tests. The results show that all fiber surface modifications increased peak strength and fracture energy, for example, the fracture energy of specimens AN1, AH1 and AK1 was increased by 180.4%, 121.5% and 155.4%, respectively, compared to PVA1. In addition, the crack tip strain, crack propagation rate and the initial crack width of the modified specimens were lower than those before modification. Lastly, scanning electron microscope (SEM) and mercury intrusion porosimetry tests were adopted to reveal the mechanism of bending performance in cemented soils reinforced by fiber surface modifications.

Cite

CITATION STYLE

APA

Liang, L., Xu, Y., & Hu, S. (2022). Bending and Crack Evolution Behaviors of Cemented Soil Reinforced with Surface Modified PVA Fiber. Materials, 15(14). https://doi.org/10.3390/ma15144799

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free