Penerapan Metode Silhouette Coefficient untuk Evaluasi Clustering Obat

  • Paembonan S
  • Abduh H
N/ACitations
Citations of this article
558Readers
Mendeley users who have this article in their library.

Abstract

Dalam penelitian ini menggunakan metode k-means, metode ini dapat digunakan untuk menjadikan beberapa obat yang mirip menjadi suatu kelompok data tertentu. Salah satu cara untuk mengetahui tingkat kemiripan data adalah melalui perhitungan jarak antar data. Semakain kecil jarak antar data semakin tinggi tingkat kemiripan data tersebut dan sebaliknya semakin besar jarak antar data maka semakin rendah tingkat kemiripannya. Tujuan akhir clustering adalah untuk menentukan kelompok dalam sekumpulan data yang tidak berlabel, karena clustering merupakan suatu metode unsupervised dan tidak terdapat suatu kondisi awal untuk sejumlah cluster yang mungkin terbentuk dalam sekumpulan data, maka dibutuhkan suatu evaluasi hasil clustering. Berdasarkan evaluasi yang dilakukan terhadap hasil clustering dengan nilai dari silhouette coeficient = 0,4854. In this study using the k-means method, this method can be used to make several similar drugs into a certain data group. One way to determine the level of similarity of the data is through the calculation of the distance between the data. The smaller the distance between the data, the higher the level of similarity between the data and vice versa, the greater the distance between the data, the lower the similarity level. For a number of clusters that may be formed in a data set, an evaluation of the results of clustering is needed. Based on the evaluation carried out on the results of clustering with the value of the silhouette coefficient = 0.4854.

Cite

CITATION STYLE

APA

Paembonan, S., & Abduh, H. (2021). Penerapan Metode Silhouette Coefficient untuk Evaluasi Clustering Obat. PENA TEKNIK: Jurnal Ilmiah Ilmu-Ilmu Teknik, 6(2), 48. https://doi.org/10.51557/pt_jiit.v6i2.659

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free