Simulations of the electrical activity in the heart with graphic processing units

3Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The modeling of the electrical activity of the heart is of great medical and scientific interest, because it provides a way to get a better understanding of the related biophysical phenomena, allows the development of new techniques for diagnoses and serves as a platform for drug tests. The cardiac electrophysiology may be simulated by solving a partial differential equation (PDE) coupled to a system of ordinary differential equations (ODEs) describing the electrical behavior of the cell membrane. The numerical solution is, however, computationally demanding because of the fine temporal and spatial sampling required. The demand for real time high definition 3D graphics made the new graphic processing units (GPUs) a highly parallel, multithreaded, many-core processor with tremendous computational horsepower. It makes the use of GPUs a promising alternative to simulate the electrical activity in the heart. The aim of this work is to study the performance of the use of GPUs to solve the equations underlying the electrical activity in a simple cardiac tissue. © 2010 Springer-Verlag Berlin Heidelberg.

Cite

CITATION STYLE

APA

Rocha, B. M., Campos, F. O., Plank, G., Dos Santos, R. W., Liebmann, M., & Haase, G. (2010). Simulations of the electrical activity in the heart with graphic processing units. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 6067 LNCS, pp. 439–448). https://doi.org/10.1007/978-3-642-14390-8_46

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free